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Abstract: This paper adresses the problem of assesing the quality of an a~posteriori
error estimate of a finite element solution. An error estimate based on local L2-projections
1s analyzed in the case of translation invariant meshes. It is shown that for general meshes
this technique does not lead to an asymptotically exact estimator. The problem is analyzed
in detail in the one-dimensional setting. It is shown that an asymptotically exact estimator
is not the cptimal one when the solution is not sufficiently smooth. An optimal estimator
for adaptively constructed meshes is given. Finally, a general mathematical framework for
the quality assesment of estimators is introduced.
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1. Introduction. Since the first papers by Babuska and Rheinboldt [5,6] on a~poste-
riori error estimates in the finite element method, the subject has become increasingly
important in finite element practice [9,10,12,14,16,19,20,23,25,30,32]. Presently there exist
various codes (for research or for commercial use) including a-posteriori error estimation.

There are essentially three major types of estimators (see also the discussion in (27}):

a) estimators based on residual considerations,
b) estimators based on averaging techniques,
c) estimators based on extrapolation.

The first proposed estimators were of residual type. For some of them a rather precise
mathematical analysis has been presented [1,4,11,17,18,23]. Others were derived ua purely
heuristic grounds. Estimators of this type have been also used as the basis for adaptive
approaches (see e.g. (8,16,22,23,25]). The first research adaptive code based on a residual
estimaator is likely FEARS (7,20].

In recent years, the estimators of type (b) have become extremely popular; in particu-
lar, the estimaror proposed by Zienkiewicz and Zhu [31]. This paper will address estimators
of this type in detail.

Estimators of type (c) are usually used in connection with the p-version of FEM (see
e.g. [26,27]), while estimators of type (a) and (b) are used mostly but not exclusively in
connection with the h-version of the method.

2. The model problems. We shall consider the two following model problems.
a) Let 2 C K? be » bounded polygonal domain with bourdary I'. We assume that
[ = T4 UT, (for simplicity we assume that I'q has positive length). We are interested in
the solution of the problem
-Au=f, inQ,
(2.1) u=0, onlyq,
=g, only;
we denote by n the outer normal vector to I'. We assume that f and g are sufficiently
smooth functions; then the solution of (2.1) exists and is unique.
b) Let Q, := (0,1) x (0,1); we consider the Laplace equation with periodic bonndary
conditions:
-Au = f y in Q' y
u(o'l‘z):“(lsf-z) ' %(0,12)'—‘%(1,12) , 0<z; <1,
u(zlv0)=u(:lv1)9 5‘9%(:110)=§2’;(1h1)v 051'1 51 y
fﬂ, u dzldzg =0.

(2.2)

We assume that f is sufficiently smocth and that fn. f dz,dzq = 0; then the solution of
(2.2) exists and is unique. If f and u are periodically extended to R? then obviously u solves
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the differ-ntial equation in R? also. From now on, when we speak about the reguiarity of
the solution of this problem, we mean the regularity of the periodically extended solution.

Remark 2.1. We restrict ourselves to these model problems for the sake of simplicity
but our resuits hold in more general situations. 0J

Let [ulf := [, |Vul’dz1dz; and [uf] := [, [ul*dzidzsy; let HY(Q) := {u : |uf? + [ufd <
oo} be the usual Sobolev space. Further, let us define H}(Q2) := {u € H(Q) : u =
0, onTlq} and H. . (Q) := {u € H'(Q,) : uhasperiod1and [, u dz;dz; = 0}.

Obviously | - |, is a norm on Hg(Q) and on H}__ ().
We consider the usual variational form of (2.1) and (2.2). Let

(2.3) B(u,v) := / Vu- Vv dzidz;
1]

and

(2.4) lull? == B(u,u) = |uf? .

Further, for problem (2.1), let

(2.5) Fv):= /{;ﬂ: drydz; + /r gv ds
and for problem (2.2) let

(2.6) F(v) :='/Q fv dz,dz; ;

both are linear functionals on Hj(Q) and H}__(Q,) respectively. The weak solution uq €
H} () (respectively ug € H!__(Q,)) is such that

PER

(2.7) B(ug,v) = F(v), Yvé€ Hy(Q) (resp. ve H:“(Q,)) .

For the finite element method we partition {2 into a set of (closed) elements 7 defined
by the mesh 7,; (to fix ideas, let us consider a triangular mesh). Let the mesh be regular
in the sense of a minimal angle condition and let h denote the max,e7, diam(r).

Furthermore let
SiQ):={ue HY(Q) : u|,eP,, VreTi},
(P, denote the set of polynomials of degree r) and let

Sr.o(Q) := S{(Q) N Hy(Q) and Sheen(§e) = SHQ)NH]__(Q).

PER




The functions of 5, (Q,) can be periodically extended to R?; we denote S} ,__ to the
set of these extensions.

We say that a mesh is (h;, he)-translation invariant (h;, h2 positive numbers) if for
any pair of integers vy, and for any u € S} ., u(zy + k1,22 +10ky) € Sh . rEr- Figure
2.1 shows some of these meshes.

T (a) (b) (o) -

Figure 2.1

a) (A, h)~translation invariant mesh, O
b) (2h,2h)-translatinn invariant mesh,

¢) (2h, h)-translation invariant mesh.
The finite element solution ugg € Sy 4(12) (resp. S§ . . (€%)) is defined as:

(2.8) B(tyy,v) = F(v), Yv€ Sio(R) (resp. ve Sy, ..(S%)).

3. A-posteriori error estimates based on averaging techniques. The main
idea behind the averaging techniques is to observe that Vu,, ¢ S5(f2)? and to construct
U € S;(2)? using only u,, with the hope that

(3.) Vo - Ul « [Vatg = Ve -
If (3.1) holds then

(3.2) U = Vugely % l|uo = upell,; -
and we can define

(33) e := U - Vupl,

as the a—posteriori error estimator (with respect to the energy norm).
Given a class of functions H C Hg () (respectively H C H]_,(Q,)) we call ¢ a correct
estimator on H if there exist constants C; and C; (0 < C; £ C; < o) such that

£

34 C £ <Cy; .
(34 "2 Tuo—upall, =
. -




whenever the solution ug belongs to H; these constants must be independent of the mesh-
size but could depend on the minimal angle of the mesh and on the class H.

On the other hand, the estimator ¢ is called asymptotically exact on H if

£

I® —— 1, ash-=0,
Huo — upgll,

(3.5) §

whenever the solution u¢ belongs to H.
There are many suggestions in the literzture for the construction of U (and hence of
¢), mostly without any theoretical justification. Let us divide these constructions into a
few basic groups:
1) global construction of U,
2) local construction of U,

3) semilocal construction of U.

Further we may distinguish between two other groups:

a) general construction of U,
b) construction of U based on the available information of the problem (i.e. the
differencial operator) under consideration.

In what follows we restrict ourselves mostly to the case r = 1 (i.e. piecewise linear
elements) for simplicity. In this case the solution u,; and U itself are characterized by
their nodal values. Each nodal value of U depends only on the values of u,. in some
neighborhood of this nodal point. Different kinds of neighborhoods distinguish the groups
1, 2 and 3 mentioned above.

Let A be a nodal point of a mesh 7, and s > 1 an integer. For s = 1 we define
NYA):= U{r €Th : 73 A}
and for s > 1 we define recursively

NH(4A) = U NY(B).

B node of N*(A)

When U(A) is defined only by the values of u,; on N'(A) we say that the construction
is local. When the values on N*(4) for s > 1 are used, we say that it is semilocal. The
construction is global if the values of u,, on the whole domain Q are used. Figure 3.1
illustrates these notions.




S set A S et A2

¢ nodal points of \!
Figure 3.1

A typical construction of U := (U, U;) consists of using the L?({2)-projection of %‘-15'5
on S;(N) as U;, i = 1,2 (see e.g. [31]). This construction belongs to the category 1-a; the
matrix for determining the nodal values of U; is the usual mass matrix. A local construction
of type 2-a is obtained if the lumped mass matrix is used instead of the consistent one.

Ui(A) can also be defined as the value at that node of the L?(N?(A))-projection of
i}f‘_‘- onto the set of continuous piecewise linear functions on that patch. This construction
also belongs to category 2-a and will be especially addressed later.

In general any local construction defines U;(4) as a weighted average of the constant
values of %—f‘e‘ in the clements » C N''(A). For various types of averages we refer to [23,29].

These kind of constructions usually lead to estimators correct on H}(Q) (respectively
on H}_.(€)) in the sense of (3.4) with constants C),C; depending on the geometry of
the mesh. However, asymptotic exactness is related with superconvergence effects. If the
mesh is translation invariant then many superconvergence results hold; we refer to section
30 of [28] for this subject. These results can be easily employed for the construction of U
and hence of the estimator.

Let us now consider problem (2.2). Assume that the mesh is (hy, hy)-translation
invariant. Let

1 h h
(Di.h") (z1,22) 1= 7+ |u(z1 + '1»12) - u(z) - "'1',-1'2) ,
h, 2 2

1 h h
(D%.h“) (z1,22) 1= ha [“(1'!,1-'2 + '23) - u(zy,22 ~ ?2)] .
2

Then we have (see Theorem 30.1 of [28]):




THEOREM 3.1. If the periodic extension of the solution ug of (2.2) has three bounded
derivatives, i.e.:

Puo

R ———————— < 2 . N =
aziazjazk(l'l,IZ) <M, Y(z,z2)€R*, 4,5,k=1,2,

(3.6)

and the mesh is (hy, hz)-translation invariant, then

Ou
‘(5;% - D:;.Iaurr.) (z1,22)

Remark 3.1. Theorem 3.1 can be easily understood. %{} is the solution of problem
(2.2) with f replaced by f—é and D} ,ug, is the finite element solution of problem (2.2)
with f replaced by D}, f. Since l % - D}, f ' = O(h?), then the conclusion of the theorem
holds. (The log(h)-term comes from the L™ error estimate of the finite element solution).

a

< Clloghlh*M , i=1,2.

This theorem allows us to design proper averages, for . s such as those in Fig. 2.1.
For the following examples let us assume that the solution ug of problem (2.2) is in the
subspace H of periodic functions with three bounded derivatives.

Mesh 2.1.a. Consider the set A''(A) shown in Fig 3.2.

By N2 B

A
St ———a B
B e A

—F D T —

Bs N; B
= h =~ h —

Figure 3.2

We have:

Fupy
a:t,

Ou
T2 (My) = (M) + |log HIO(AY)
z1

Ou Ou

2 (Ma) = ZZE(Ma) + |log HlO(A?)
Ou Ou

7, (V1) = 32(V1) + |log HO(A?) ,
?’_‘2 - Fuyg 2
32 (V2) = ZIE(Ny) + | log hlO(A?) .
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But

au() _ 1 3140 auo 25
-a';_-l'(A) =3 [a_z‘(“/fl) + b‘z'l‘(Mz)] + O(h%)
and Bu 1 [Bu Bu
=9 == |20 o 2
azl(A) 5 [azl(Nl)+ azl(Ng)} + O(h*%),
and hence
Oug , _ l aurs Otye
5o (4) = 5 [2 SEE (M) + 25 T2 (M)
Ou Oue ; 2
(3.7) * 22 (VM) + 5, (Nz)] + |log R{O(A%) .

The average of a%f} on the right hand side of (3.7) is identical to the nodal value U;(4)
obtained by the L?(,V!(A4))-projection (or equivalently by the lumped L?(Q)-projection).
An analogous result is true for U;. Therefore, since U is defined by its nodal values hich
are higher order approximations of the exact solution, an explicit calculation shows that
(3.1) holds and hence, on these kind of meshes, this projection leads to an asymptotically
exact estimator on the space H of periodic functions satisfying (3.6).

Mesh 2.1.b. In this case the mesh is (2h,2h)-translation invariant. Consider V1(4)
and A'1(C) as shown in Fig 3.3.

B, Dy Ns D; Ns D
li ) " T
h h
A l ) |
B My | M Big bs N N, D1y
h h
! LN L
B, D¢ Ny Dr Ny Ds
a) N'1(4) b) NY(C)
Figure 3.3
We have
a‘le 1 2
5;(‘4) = 5,: [urs(Bl) - ur:(B3)] + |log A|O(A*)
1
= 5; {[“r:(Bl) - urr.(A)] + [un(A) - urs(BJ)]} + |logh|0(h2)
1 [du 17}
(3.8) = 5 [ a;l'(l\rlg) + at:'i (M)] +|log th(h’) .

9




Similarly for .V '(C):

Bug, . 1 au" By v . Dty du,,
E(A) =32 (N )+2 Bz, (N2) + e =(N;) + 5z, (V4)
(3.9) +%—;:5(Ns)+ au"(Ns) + |log h|O(R?) .

It is easy to check that the L?(N!)-projection of %ff gives the same averages as in
(3.8) and (3.9). Therefore, also for these kind of meshes, this projection leads to asymprot-
ically exact estimators on the space H of periodic function with three bounded derivatives.

Mesh 2.1.c. Now the mesh is (2h, h)-translation invariant. Let .V'(A) be as in Fig 3.4.

B, P

D
VN
Bslan NG By

— T —h— > —

B N, By N; Bs

Figure 3.4
In this case, the value obtained by the L?(.V!)-projection is

Ou,,
Oz,

Ouge

0z,

(3.10) Ui(A) = a““(w ) +2

Bz, (N1) +

(M) +

This value coincides up to higher order terms with %}‘:(C) (see Fig. 3.3; dist(AC) = %)
instead of gﬂ( A4). An analogous statement is true for each interior node; for instance.
U(B,) coincides with ?E(D) (see again Fig. 3.3; dist(By1D) = 3) instead of -‘?ﬂ-(B ).

Let R be the square of vertices 4, By, P, B,; by using the correspondmg averages of the
form (3.10) for each vertex and applying Theorem 3.1 and appropiate mean value theorems
we obtain:

auu 62110 s
A U, —E dz,dz; = [6:: 9z Q)] + |log h|O(R*)

: . . S . .
Therefore, U, is not an approximation of g%? of higher order than T;ff. A similar analysis
is valid for U';. Hence the condition (3.1) on which the effectiveness of this estimator is
based is not satisfied.

10




So, the estimator ¢ will not be asymptotically exact on these kind of meshes unless
a fortunate compensation happens. But, in general, this is not the case. For instance
consider the following problem:

{-—Au:O, in 2,

u=g, onl,

where  is the unit square and g is defined in Figure 3.5:

2

1 9(z,1) =2y

9(0,z2) =0 9(1,r2) = 22

0 g(-l'] ) 0) =0 1 1
Figure 3.5
The solution of this problem is uo(z1,z2) = z,;2;. In this example the F.E. approxima-
tion coincides with the exact solution at the nodes of the mesh (i.e. u.g is the interpolant

of ug). So the exact error and the estimator can be explicitly computed. For any triangie
r of the mesh we have

IV‘UQ-—VU |2=-}-ll and IU—-VU |2=le_4.‘
r re 6 . FE 54

Therefore /i
fm— YT o088,
"uo - ur:", 3

independently of the mesh size h. That is, in spite of the smoothness of the solution, § 4 1
as h — 0.

This example shows that the estimator based on the L?(.V!)-projection is not always
asymptotically exact, even in the simple case of translation invariant meshes. To obtain
an asymptotically exact estimator, the geometry of the mesh should be used in a more
sophisticated way.

Now, let us briefly consider the case r = 2. For (h,, h;)-invariant translation meshes,

let
4 1

3 3

For smooth functions u this is a fourth order approximation of ;,‘?zl'. The following theorem

? . — 1 1
D"‘hu = D,-‘,.u -— Di,Zﬁu .

is also a consequence of Theorem 30.1 of [28].

11




THEOREM 3.2. If the periodic extension of the solution ug of (2.2) has four bounded
derivatives, i.e.:

a‘uo

m;a—z(l'x,-’rz) <M, ¥Y(z,z2)€R?, i,jki=12,
i0Z;

and the mesh is (h), hy)-translation invariant, then

(52 - D2uuee) (ersza)| sowp L 112,

dz;

By using this theorem we may construct U € S? (Q) satisfying (3.1) for invariant
translistion meshes. For instance consider a uniform mesh as that in 2.1.a.

h X o K = e = =X

Figure 3.6

We neec to define the nodal values of U. For instance, with the notation of Fig. 3.6,
let

UI(C) (Dx hur:)(c)
- _4_un(D) = Uy, (B) _ _l_ur:(E) = ugg(A)

~ 3 h 3 2h
= 2 [“n(D) = upe(C) + Upe (C) = upe (B)
3 h/2 h/2
—_ [ n:(E) - url:(D) ur:(D) - u"(C) + “ra(c) - ur:(B) + E@E) - un:("l)
12 h/2 h/2 h/2 h/2
a“n: Ou,, 1 Otyy Ou,, .
= 5 |G+ G| - 5 (G2 + o) |

by using Theorem 3.2 w= have
_ Oug, .. N
U(C) = 32 (C)+ O(h%).

The same construction can be made for any other node P of the mesh and also for Us;
i.e., in general,

UiP):= (D} puye) (P) .

12




It can be easily provad that this construction yields an asymptotically exact estimator.

We observe that in this case the construction of U is semilocal; in fact U(C) is an
average of ég-f}, i = 1,2 at points of triangles r C N?(C).

In the case of problem (2.1) we have to extend the solutions ug and u,, outside of
so that the averages can be computed also on the boundary. We suggest the use of Babi¢
extension techniques. In the next section we shall discuss in detail these techniques for the
one-dimensional case. For the n-dimensional case see, for instance, [21] (pp 75-77).

For general meshes it is probably impossible that estimators of this kind can be asymp-
totically exact, since this seems to depend on a superconvergence effect. At any rate, for
practical constructions, those estimators that are asymptotically exact for invariant trans-
lation meshes seems to be preferable.

We addressed only local and semilocal constructions. However, it is very likely that
global estimators based on L2-projections will not bring a larger benefit and will not avoid
the problem with general meshes.

So far we have discussed only estimators of type (a). Semilocal or global constructions
of U of type (b) are more expensive but could lead to asymptotically exact estimators also
for general meshes. These constructions are based on postprocessing techniques, but we
will not analyze these kind of estimators here. For further references on this subject see
[15,23].

Remark 3.2. It is very likely that the first result related to the superconvergence of
smoothening constructions that could be used to define a-posteriori estimators is in [24]
(1969). An important result of the same type is also in [13]. O

4. Model problem in one dimension. In the forthcoming sections we shall analyze
in detail the one dimensional case to gain additional insight. Let us consider the problem
-u"=f, onl:=(0,1),
{ u(0)=u(l)=0
and let f be such that u € Hj(I).

Let 7 be a partition of the interval [ with nodes 0 = zp < r;, < - < rp = L.
I :=[zic1, 2] hii= 2y = 242y, i=1,...,0.

(4.1)

Consider the finite element method with piecewise linear elements on the mesh 7. In
this case we have
Upg(Zi) =u(zy), 1=1,....,n;

i.e. u,, is the piecewise linear interpolant of u.

Denote e, := u — u,,. We shall be interested in error indicators n, approximating

: AL
leuly s, i=ledlo s, = [f,i(e_)ildz] , where

(4.2) n? = /, (U - u;"__)2 :




here U is a continuous piecewise linear function on /. In Fig. 4.1 we show u’, u_, and

Ulr.. :

: hio1
Ti-2 _, -1 L o Iy

his1

|
1
!
|
1

Figure 4.1

We shall consider only local constructions of U and discuss various aspects of such
constructions. For any z;,1 <i < n -1, we define

j=i+l
(4.3) U) =Y. 1 up(zi),

Jj=i=-1

where 75" depend on the mesh.

We constrain the coefficients 7?’ so that U(z;) = u_ (z;) when u__ is linear on

N(z;) := I; U I;4,. This leads to the formula

U(l‘.’) - ur:(zi) - . FE(Ii-‘) +a; uﬂ:(zi-i-l) - urs(zi) _ UFE(I.‘) - u,_.s(.ri_l)

hi ) Rist hi
(4.4)
= u'nlf-' + ai [u’n]i = t“vrz“-'-m + B [u:r:]i '
where
(4.5) [u'n]i = u:r:"-'ﬂ - u;rl:ll-'

is the jump of the derivative of u,, at z;; (obviously a; = 1 + ;). U(z;) depends only on
the values of u,  in the elements J; and I;4, which contains the mesh point z,.

For the values of U(zo) and U(z,) formula (4.4) cannot be directly applied. To use this
formula we need to extend u and u,, for z < 0 (and for z > 1) by a process that preserves
the smoothness of the function under consideration. For example, it is possible to use
Babig extension (see e.g. (21}, pp 75-77). This extension preserves the smoothness of u in

14




the sense that if u € H*([0,73]), (1 € s < 3), then the extended function v on [z, 23]
which coincides with u on [zo,z3] is such that v € H*([z-1,22]) and |[vll guqie_, 2y <
C"“"y-([,,,,,])» where C depends only on the local regularity of the mesh. Using z; = —h;3,
v(z_;) depends only on u(zo), u(z,) and u(z~' and hence the extension can be used for
u,g as well. When 1 < s < 2 the simple antisymmetric extension (that is a Babi¢ extension
preserving at most H2-smoothness) can be us 4. In any case, (4.4) can be applied to the
extended function. Let us remark that if u is e: tended antisymmetrically U(zo) = ul_(z0).

Now, defining
(4.6) V(z):=U(z) ~up(z), z€l,
we have for z € I;
(4.7) V(z) = Vi(z) i= Bier [ule]_, vi-1(2) + ai [u} ], wi(2)

where ; and ;- are the standard linear shape functions on I;. Hence using (4.2) we get
(4.8) nt=Vilos = /; Vi(z)*dz

and so we can understand the indicator n? as a quadratic form on the jumps [u;s] ,, and
[u'"]'.; ie.
(4.9) 'lu’z = h; Z Yik [u'n]j [u'n]k :

Jokmi=1,i

Using (4.7) and (4.8) v, & are directly related to 8;—; and a; in an obvious way. However
the indicator (4.9) can be defined without any relation to the function V;(z). We can simply
define v; i« and address the accuracy of that indicator.

We define the error estimator:
n
(4-10) =) nt.
=1

Let us mention that the well known Zienkiewicz-Zhu estimator (2-Z) [31] which uses
the L?-projection of u,, on N(z;) leads to

hi< _ hisi
(4.11) Biey = TR + A i Y hiv1
On the other hand, the Babuska-Miller estimator (4] (B-M) leads to
h; h;
(4.12) Bi-1 = Rtk YT hithe

Obviously for uniform meshes both estimators, Z-Z and B-M, are identical.

By using ficticious nodes z; := —h; and z,4) := 1 + Aa-y, the Babi¢ extension of u
preserving H’-smoothness for 1 < s < 3, gives [“:r:]o = [“;:]1 and [u'"]" = [u;s]"_l.
The Z-Z estimator uses [“'n]o = [“;:]u = 0 (these are also the values obtained by the
antisymmetric Babi¢ extension). Nevertheless it is easy to see that both extensions lead

to the same indicator.
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5. Principles of the assesment of the quality of an error estimator. The
formulation of the quality of an error estimator is far from being obvious. One of the most
natural principles is to compare the indicator 7; and the true error |ey|, ;.. To this end we
define the elemental effectivity indices

i .
5.1 § I — i=1,...,n.
( ) f IC.II'I‘

We say that the indicator is asymptotically exact if for any mesh such that 0 < C; <
ﬁ: <C2 <o, (i =1,...,n =1), and, for u sufficiently smooth and such that |e,|, ; 2

Ch?. (C >0), we haveforalli = 1,...,n,

£i-’1) as h.’-’O.

If these elemental effectivity indices are used as a criterion to choose an indicator, the
asymptotically exact indicators would be preferable when the mesh is sufficiently refined.
However we note that this obvious criterion needs to be refined as it will be seen later.

In practice, the solution u is unknown but, usually, it is known that u belongs to certain
space of functions H C H}(I). In this case we may define

(5.2) (Lu)(z) := (Liu)(z) := (e, = Vi)(2) , zel;
and understand £, as a mapping of M onto the space L?(I;). Since

(5.3)

leals,r, = M| = [letlo,z, = Vilo,s| < 1€k = Vilo, = 1€suly s,
then |L,ul, ;. can be used for the assesment of the quality of the indicator.

We ~ould introduce
|£i1’|o,l.~
p(H) := sup ————
'E'H Ie"ll'l.‘

as a measure of this quality. For any indicator, there exists a function ¢ € X such that

|£|1‘JI°J‘. = p(H)k"’Il.l; :

If we do not know anything more about the solution than u € X, the safest choice would
be to use that indicator which minimizes p(*). However this approach has a major disad-
vantage: p(H) < oo only for very restrictive spaces H. For example, even for H = C>(I),
p(H) = o

To avoid this, we can asses the quality of an indicator by the norm of £;

|L4vlg
(5,4) ”c'” 1= sup — .
ven [[Vlly
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and prefer those indicators leading to smaller ||£;||. This quality measure obviously de-
pends on the space H(I) of possible solutions. In subsequent sections we skall study this
criterion in detail.

So far, we described criterions of elemental type. We can also define the quality of the
indicator through the corresponding estimator, i.e. to use the global effectivity index

noont
(55) E = Ic el - (2|=1 7’:) *
(T ley)

or analogously the norm of £

¥
euly, S =Y
(56) Il = s o = Tl

and to prefer an indicator based on the (global) quality assesment of the estimator.

6. Comparison of Z-Z and B-M indicators based on the elemental effectivity
index. In this section we compare Z-Z and B-M indicators in order to show the difficulties
arising in the comparison of any estimators.

THEOREM 6.1. B-M indicator is asymptotically exact.

Proof. It can be easily seen that when u is a quadratic polynomial, U coincides exactly
with u’ and hence §; = 1. In general, for « sufficiently smooth (say, for instance, that u"'(z)
is beanded for z € I, where I := i U ;U [;4,), let

u(z) = co + ¢1(z = z;) + c2(z = 2,)* + R(z)
be the Taylor expansion of u and let
i(z):=co +c1(z —z;) +c2(z - 2,)% .
Let &,, be the finite element aproximation of u (i.e. its interpolant). Let U and U be the

linear functions on I; defined by (4.4) by using B-M coefficients (4.12) for u,, and U,
respectively; i.e., for j =1 - 1,1,

U(z;) = hj  u(zj41) —u(z;) hjp1  u(z;) —u(z;—1) :
h,‘ + hjs hjv1 hj + hjp h,
(6.1)
b(z;) = h;  u(zj41) —u(z;) hjer  Uu(z;)=u(z,-1) '
hj+hjsi hiva hj+hjs h,
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Since @ is a quadratic polynomial, then U(z) = #'(z), for z € I and hence
[ = lealin] = U =l o f, = ' = vy p | S W =Wl S W =Tlog, + 18 = w'lo s, 5
therefore,

U = Ulo,r, + 10" =],

le-ll»li

S L

Ieulx,j,-

(6.2) i -1 =

Now, since u - 4 = R, then by using (6.1) we have for j =i ~ 1,1,

h,‘ R(Ij+1)-R(I)‘) + hj+1 R(xj)—R(Ij_l)
hj + ki1 hj+1 hj + hje h;

h,’ h'+l
hJ + hj+l (C)‘P‘) + h) + hj+l (CJ)

(U =0)z;) =

with ;1 < (; < z; < (j41 < Zj+1; hence

U = Tlo 1, < b} max|R(z)] .
' ¢el;

On the other hand,
L < *
[u' =g, <A max |R'(z)]

and therefore, using these bounds in (6.2), we obtain

6 -1l < 2h} max, ;- |R(z)

IC-ILI,.

Because of the assumed smoothness of u and the regularity of the mesh (i.e. 0 < C; <
r)’_'t- < C; < ), R'(z) = O(h?), for z € I;; therefore, whenever lewly s, 2 Ch?, (C > 0),
then |§; — 1] — 0 as h; — 0; that is, B-M indicator is asymptotically exact.

(=

Let us underline the role of the smcthness of u. In the proof of the theorem we assume
that u'’(z) is bounded for z € I;. Instead, it could be assumed u € H?**(l,), (¢ > 0).

% '
2A/ mu(ui |R ()|

The elemental effectivity index £; depends on the quotient Q, := and the

Ie"l.l.’
asymptotic exactness occurs if Q; — 0 as h; — 0. Nevertheless, for fixed h;, & depends
on Q; and a high quality index requires Q; € 1. We shall return to this problem in the

subsequent sections.
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THEOREM 6.2. 2-2 indicator is not asymptotically exact.

Proof. Assume that u is a quadratic polynomial; consider a mesh such that A,_; =
hi+1 = 2h;. An explicit computation shows that the elemental effectivity index is §; = 2
independently of the meshsize h;. Therefore Z-Z is not asymptotically exact. 0

Let us now consider as a numerical example a particular problem (4.1) whose solution
is given by u(z) = R(z?*""). Z-Z and B-M indicators are identical for uniform meshes,
hence to observe different performances we need to use a non uniform one. Let z,_, = 0.01,
z;-1 = 0.04, r; = 0.09, z,4+; = 0.16. Table 6.1 shows the elemental effectivity index &; for
both indicators.

¢=0.0 g=0.5
P Z-Z B-M Z-Z B-M

0.35 1.07 1.78 4.70 6.19
0.65 1.03 1.68 3.18 5.21
0.75 0.99 1.57 1.59 2.80
0.85 0.97 1.48 1.18 2.07
0.95 0.96 1.39 1.01 1.69
1.05 0.96 1.32 0.94 1.45
1.15 0.96 1.26 0.92 1.29
1.25 0.97 1.20 0.93 1.17
1.35 0.98 1.15 0.97 1.08
1.45 1.01 111 1.01 1.02
1.55 1.03 1.07 1.07 0.99
1.65 1.07 1.04 1.13 0.97
1.75 1.10 1.02 1.20 0.96
1.85 1.15 1.01 1.27 0.97
1.95 1.19 1.00 1.35 0.99
2.05 1.24 1.00 1.44 1.02
2.15 1.30 1.01 1.52 1.06
2.25 1.35 1.02 1.61 1.11
2.35 141 1.04 1.7 1.16
2.45 1.48 1.06 181 1.21

Table 6.1. Elemental effectivity indices for different singular solutions.

We observe that the Z-Z indicator is better for nonsmooth solutions (p < 1.5) and the
B-M indicator is better for smooth u. The inaccuracy of the B-M indicator for p small is
directly related to the nonsmoothness of the function u and the poor quality of the Z.-Z
indicator for p large is related to the fact that it is not asymptotically exact. Table 6.1
shows that to measure the quality of an indicator is not a simple task. In the next sections
we shall address in more detail the observed effects.

Let us consider now a particular problem (4.1) whose solution is given by

(6.3) w(z)=z" -z, rel=(01).
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Forp > 1.5, u € H2*¢(I), (¢ > 0), and hence the asymptotic exactness of the B-M indicator
should be reflected in its performance. But for p < 1.5 we cannot expect to observe high
quality effectivity indices for this indicator.

Remark 6.1. We study these kind of problems with solutions (6.3) since they are one
dimensional models for the singularity of the solutions of two dimensional elliptic problems
in the neighborhood of a corner. O

We consider graded meshes with nodes

i\? .
(6.4) T = (;) ) i=0,...,n,

with 3 > 0. Table 6.2 shows the true error and the elemental effectivity indices §; for
n = 10, for p = 1.25 and p = 2.25, and for 3 =2.0 and 8 = 0.5.

p=125
=20 B8=0.5
Int. error Z-2 B-M error Z-Z B-M
1 | 6.45(-3) | 1.172 | 0.391 | 8.61(-2) | 0.256 | 0.618
2 | 7.03(-3) | 0937 | 1441 | 8.85(-3) | 3.574 | 1.392
3 8.02(-3) 0.968 1.198 4.86(-3) 1.254 1.034
4 | 804(-3) | 0983 | 1.103 | 3.31(-3) | 1.116 | 1.016
5 | 805(-3) | 0990 | 1.063 | 2.49(-3) | 1.068 | 1.009
6 8.06(-3) 0.993 1.042 1.98(-3) 1.044 1.006
7 8.06(-3) 0.995 1.030 1.64(-3) 1.032 1.004
8 | 8.06(-3) | 0996 | 1.023 | 1.40(-3) | 1.024 | 1.003
9 8.06(-3) 0.997 1.018 1.21(-3) 1.018 1.002
10 8.07(-3) 0.970 1.084 1.07(-3) 1.080 1.021
—_— e —reee
8=20 B8=035
Int. error zZ-Z B-M error Z-Z B-M
1 | 211(4) | 4024 | 1.341 | 891(-2) | 0469 | 1.151
2 | 167(-3) | 1.807 | 1.050 | 3.02(-2) | 1.879 | 0.969
3 4.57(-3) 1.352 1.019 2.17(-2) 1.116 0.996
4 8.93(-3) 1.194 1.010 1.75(-2) 1.054 0.998
5 1.47(-2) 1.122 1.006 1.50(-2) 1.031 0.999
6 | 220(2) | 1083 | 1004 | 1.32(-2) | 1.021 | 0.999
7 | 3.07-2) | 1060 | 1002 | 1.19(-2) | 1.015 | 0.999
8 | 4.00(-2) | 1045 | 1.002 | 1.09(-2) | 1.011 | 1.000
9 | 525-2) | 1.036 | 1.002 | 1.01(-2) | 1.008 | 1.000
10 6.56(-2) 0.872 0.974 9.38(-3) 1.050 0.993

Table 6.2. Elemental effectivity indices for different graded meshes.
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We observe the following features:

1) Z-Z indicator is of high quality when the mesh s equilibrated; i.e. the mesh is
such that the errors are almost equidistributed in all the subintervals. (In the next
section we shall address this feature in detail).

ii) B-M indicator is in general of higher quality, except for those meshes that are well
equilibrated and wher the solution is not sufficiently smooth.

iii) The performance of Z-Z and B-M indicators in the first and the last intervals is in
general poor. This feature is related to extension aspects.

7. Further analysis of Z-Z and B-M indicators and their generalization. As
we have seen in section 4, U(z;) is a weighted average of u:,s on I; and I;4+;. For voth
indicators, Z-Z and B-M, U(z;) lies between u,_|;, and u_|r,,,; in fact, according to (4.4),
(4.11) and (4.12):

U(zi) = u:,'|l.- +ai [u;t]i = u‘nlli + a; (u:-‘sili+l - u’n-:l’-') )

with

1

R - 2

(7.1) ai=a;”: T 5
for Z-Z indicator and

1
7.9 i=aPM i —
(7.2) M= =Ty aT

for B-M indicator, where 4; := 7;'1:
Let us now address the problem of how to select a;. Using (4.7), (4.8) and the relation
a; = 1+ B;, the ind.cater can be written:

hi ] [ ' [
(13) nl= 3 [(1 -ai)’ [ui‘l]?—l - ai(l = ai-1) [uFE]i-—l [un:]i +af [un]?] :
Forz € I; let
(7.4) u'(z) =u, 1, +ai(z — zicip) +ri(z)

with 7, 1= Zi=1*% and

L fuveNe—zip)ds 12

Qg . f[.'(z - 3i—lf2)2dz = h.g I eu(z)(z Il—lﬂ )dI = —h‘;’ A C.(I)d.t ’

hence r;(z) is orthogonal to 1 and to (z ~ z,_y2), (that s, f,‘, ri(z)dz = 0 and fl.- ri(z)z -
Ti-2 )d:t = 0).
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Let us assume that u"(z) > 0 (or u"(z) < 0) for all z € I;. Then ey (z) < 0 (resp.
eu(z) > )V € (2j1,2;5), ) =t=1,4,i+1,and w0 ai-1,a;,a;41 > 0 (resp. a;~1,ai,ai41 <

0). Let L; and R, be defined by

' ihi ihi
euln(ziz1) = -2—2— +ri(zi-1) = ‘a—é—(l - L))

(7.5)
eulr(zi) = %‘- +ri(zi) = E’%(l +R;) .

Let K, be defined by

253 213
2 - ay h.‘ 2. = ay h" -2
(7.6) lesly s, = 5 + /;‘ ri(z)dz ETH (1+K7).

If u is sufficiently smooth, L;, R, K; = O(h;).

Under the assumption u"(z) > 0 (or u"(z) < 0) Vz € I;, the jumps [u;‘.*:]'._l and
[u;‘]‘. are strictly positive (resp. strictly negative) and hence there exist coefficients ai_;
and a; such that

, _ aih; Ki
(1 =aiz1) [u, )i, = 2 (1 * %)
(1.7)

a; [u;,‘]‘.za"Thi(l-%) .

Using these coeflicients in (7.3) we obtain for the corresponding estimator

ath? 2
n = "1—2'(1 + KD =lediy, ;
that is, the coefBicients defined in (7.7) are optimal in the sense that they yield an exact
estimator of the error.
By using (7.5) the optimal coefficient a; can be written

)
(1.8) “= it (l,‘—f%) (Lﬁ%ﬂ)

and using (7.6), since a; and a;4, have the same sign,

(454)

(7.9) a; =

() (35 () o
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A similar expression holds for the other optimal coefficient a;_;.

Therefore, whenever the mesh is equilibrated with respect to the energy norm (i.e.
"“ll.l.'-; 2 l¢n|1,1, =~ |e.|l_,‘“), if u is smooth enough as R,~,L,, R, Li4+1, K = o(1) to
hold, then the optimal coeflicients are

1 1
Qi) = 1 +0o(1) and a; — T +o(1)
1+42, 1+ 4

and we have the following theorem.

THEOREM 7.1. Let u"(z) > 0 (or u"(z) < 0) forall  : I and let Ri,L,,K; = o(1),

t = 1,...,n. Then, if the mesh is equilibrated with respect to the energy norm, the
coefficients
(7.10) aP i L .

1+ 4;

yield an asymptotically exact estimator.

The values of L,, R; and K, govern the effectivity of the indicators. If the solution u
is less smooth, the values of these constants are larger and we have to expect less accurate
effectivity indices. W: shall show that when the solution has a very strong singularity, the
estimator defined by o{® is not necessarily optimal.

Consider the model prob.em of section 6 with solution (6.3). In this case u”(z) does
not change sign in I and so Theorem 7.1 can be applied. However for } < p < 1, L,, R;
and K; are not negligible and become larger as p — 3. In fact, in this particular case, when
using meshes equilibrated with respect to the energy norm, we shall see that choosing

with ¥ > 1 can be preferable.

In Table 7.1 we show the result< for various values of p and the corresponding values
of 3 in (6.4) leading to asymptotically equilibrated meshes.
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p=075 - B=6 p=125 - g=2

Int error ¥y=1 7=% error y=1 ‘7=%
1 1.12(-2) 1.05564 0.95241 6.45(-3) 1.17157 0.99033

2 2.12(-2) 1.00429 0.75513 7.93(-3) 0.93675 0.90257

3 2.35(-2) 0.99922 0.86071 8.02(-3) 0.96772 0.07630

4 2.43(-2) 0.98554 0.92311 8.04(-3) 0.98300 0.98621

5 2.46(-2) 0.98309 ' 0.95261 8.05(-3) 0.08962 0.99374

6 2.48(-2) 0.98470 0.96809 8.C6(-3) 0.99302 0.99590

7 2.49(-2) 0.98708 0.97710 8.06(-3) 0.99499 0.99710

8 2.50(-2) 0.98925 0.98278 8.06(-3) 0.99623 0.99784

9 2.50(-2) 0.99106 0.98639 8.06(-3) 0.9970% 0.09833
___10 2.50(-2) 0.83594 0.98765 8.07(-3) 0.96997 0.09848

C p=173 - B:% p=225 - ,3:2-

Int. error y=1 ! ¥y = % error y=1 ¥ = %
1 1.50(-2) 1.05414 0.89399 2.11(-2) 0.95182 1.00696

2 1.57(-2) 0.95943 0.97301 2.04(-2) 1.04344 1.02352

3 1.57(-2) 0.99164 0.99574 2.04(-2) 1.60638 1.00288

4 1.57(-2) 0.99608 0.99809 2.04(-2) 1.00292 1.00128

5 1.537(-2) 0.99770 0.99890 2.04(-2) 1.00169 1.00074

6 1.57(-2) 0.99848 0.99928 2.04(-2) 1.00111 1.00048

7 1.57(-2) 0.99892 0.99949 2.04(-2) 1.00079 1.00034

8 1.57(-2) 0.99920 0.99962 2.04(-2) 1.00059 1.00025

9 1.57(-2) 0.99938 0.99971 2.04(-2) 1.00046 1.00020
10 1.57(-2) 0.99414 0.99974 2.04(-2) 1.00414 1.00018

Table 7.1. Comparison of indicators for equilibrated meshes with respect to the energy norm.

This table shows that for p = .75, ¥ = 1 (i.e. Z-Z indicator) yields better effectivity
indices than v = % The particular good performance of this estimator is related with
the monotonicity of u and is not always valid when the solution is highly singular (see
Table 6.1). For p = 0.75 and for p = 1.25, the effectivity index in the first elements of the
estimator corresponding to v = -;- is not so close to one, because the mesh is not so well
equilibrated.

Remark 7.1. Assume once more that u is sufficiently smooth for L,, R, and i, to
be negligible in (7.5) and (7.6). Then the optimal coeflicients (7.8) are
1
14 Sixthizy '

aih;

(7.11) ai =

1
Let leLllpeqr,y = [f,'_ !e:(z){'dz] * be the usual L*([;)-norm of ¢/,. A simple Taylor series
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argument »oplied to (7.4) shows that if u is smooth enough then

1+4
et llgogr, =~ 22t
Culle(r) = 1

(s+1)°
If the mesh is equilibrated with respect to this norm, then the optimal coefficients are

1

(7.12) a; = ag') = T
1+ 4!
up to Ligher order terms. Obviously (7.10) is a particular case of this formula with s = 2.

But for instance, if the mesh is equilibrated with respect to the norm llewllLy(s,ys then 2-Z

indicator is the optimal. On the other hand, when s — oo, aﬁ’) — 7; that is, the simple

average of u__|;, and u]_|y,,, is the correct value of U(z;) when the mesh is equilibrated
with respect to the norm fle\ || (s, O

If we knew the exact errors |eu|, ; for a given mesh, then we could use them in (7.9)
to obtain optimal coefficients

(7.13) a? .= r |l .
Culyrig,
1+ ('r'r—*- )A,.

Using this information, we could improve the effectivity indices. We show this effect in the
folluwing table.

p=07 - 3=90 p=17 - FI=235

Int. error aﬁ” 052) 652) error af” 022) 6(,2)
1 1.99(-3) 1.290 1.237 1.095 3.56(-4) 3.247 2.696 1.036
2 8.11(-3) 1.118 | 0.881 1.011 2.15(-3) 1.656 1.373 1.022
3 1.42(-2) 1.128 | 0.861 0.907 4.96(-3) 1.286 1.146 1.005
4 1.95(-2) 1.110 | 0.897 | 0.929 8.59(-3) 1.156 1.076 1.002
5 2.42(-2) 1.084 | 0.928 0.950 1.29(-2) 1.097 1.047 1.001
6 2.86(-2) 1.363 | 0.048 0.964 1.79(-2) 1.066 1.031 1.001
7 3.27(-2) 1.048 | 0.961 0.973 2.35(-2) 1.048 1.023 1.001
8 3.66(-2) 1.037 | 0.970 0.979 2.97(-2) 1.036 1.017 1.000
9 4.04(-2) 1.029 | 0.976 | 0.984 3.64(-2) 1.028 1.013 1.000
10 4.40(-2) 0.700 | 0.936 [ 0.986 | 4.36(-2) 0.875 0.914 1.000

Table 7.2
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Obviously the exact errors |e,|, ;. are not available. Nevertheless, if we use the esti-
mated errors and if their ratio is reasonably close to the ratio of the true errors, then it is
possible to iterate. Table 7.3 shows the results obtained by this iterative procedure.

p=07 - =90 p=173 - 3=25

Int. error af-z) Iter. aﬁ” error aﬁ” Iter. &
1 1.99(-3) 1.237 1.131 1.095 3.56(-4) 2.696 1.242 1.036
2 8.11(-3) 0.881 0.895 1.011 2.15(-3) 1.373 0.963 1.022
3 1.42(-2) 0.861 0.909 0.907 | 4.96(-3) 1.146 1.034 1.005
4 1.95(-2) 0.897 | 0.934 0.929 | 8.59(-3) 1.076 0.980 1.002
5 2.42(-2) 0.928 0.957 0.950 1.29(-2) 1.047 1.019 1.001
6 2.86(-2) 0.948 | 0.962 0.964 1.79(-2) 1.031 0.986 1.001
T 3.27(-2) 0.961 0.981 0.973 | 2.35(-2) 1.023 1.013 1.001
8 3.66(-2) 0.970 | 0.971 0.979 | 2.97(-2) 1.017 0.989 1.000
9 4.04(-2) 0.976 0.998 0.984 3.64(-2) 1.013 1.010 1.000
10 4.40(-2) 0.936 0.968 0.986 4.36(-2) 0.914 0.991 1.0606

Table 7.3

As a conclusion, let us remark that for an adaptive procedure based on equilibrated
meshes, it is convenient to use the proper optimal indicator. The Z-Z indicator is not
the proper one when the adaptive procedure is based on equilibration with respect to the
energy norm. Nevertheless it is reasonably close, but the proper one is preferable. The
estimates could be improved if a-posteriori information about the errors is used, namely
the quotient of computed estimated errors. The results for the first and last intervals are
less reliable because of extension aspects.

8. Robustness and quality measure of an indicator. In section 4 we introduced
a family of indicators based on coefficients a,, Ji—; (see (4.7-8)) and in the subsequent
sections we discussed their performance from an asymptotic point of view. This approach
cannot be well applied when the asymptotic assumptions (i.e. L;, R,, K, = o(1) as in
section 7) are not satisfied.

In (5.4) we introduced another measure of the quality of an indicator:

ey, — V-’”'o.l.

llvlla

1

L.l := sup
veM

that can be used when the solution is I'nown to belong to a subspace H C H}([). Now,
based on this measure, we shall develop principles for judging an indicatcr without asymp-
totic assumptions. (From now on, we write Viu, Vv instead of V| in (4.7), since we shall
need to deal with functions V, defined by solutions u, v of different problema).
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Since the indicators defined by (4.7-8) satisfy e}, — Viv], ;. = 0 when v is a linear
function in J;, then we can analyze the space H modulo P; (the space of linear functions).
One of the possibilities is to consider H 2(T.-)/'F’l; however, let us note that ||L;]| is well
defined even for H!(I;)/P;.

On the other hand, £; depends on the particular indicator (i.e. on a; and 3;-, in (4.7)),
on the mesh 7 and on the particular space H. We shall write explicitly this dependence;
so, instead of (5.4), let us call

C' -— Vv . e’ -— ‘/‘.v )
(8.1) R(H,a,3,T):= sup b_i’_'. = sup I_" lo.s; ’
vEN/P, il vEM/P, |lv||.H/.,,l

the robustness index of the indicator; (from now on we omit the subindices of the coeffi-
cients a; and (3,_; defining V;v).

If we do not know anything more about the solution u than that u € X, then the
safest choice of the indicator is one whose robustness index is minimal. In fact, for any
pair (a, 3) there exists @ € H such that

les = Vidly r,

o

and so we accept the possibility that U can te the solution of our problem. Nevertheless, &
(which depends on H) could be an unlikely candidate as the solution of the problem under
consideration. This would indicate that the space H is too large for our purpose. So, the
role of H for the quality assesment is obvious.

Sometimes, it is known a-priori that the solution u belongs to all the spaces of a
certain family. To deal with this case, we introduce some notation. Let Kr y denote a
one-parameter family of spaces M., ¥ € T, where ¥ : I' = R is a positive function; we say
that u € Kr y if u € H,, Yy €T and

(8.2) 3C>0: Y(Mllully, <C, VveT.

For example, if ' = N, H, = H™(I) and y(n) = nle™" n € N, then (8.2) holds if and only
if u is analytic in I; in [2,3], these kind of spaces have been used for the characterization of
the regularity of the solutions of elliptic partial differential equations in the neighborhood
of a corner of the domain.

If for a given problem, we know not only that u € Kr y, but also llully, p, fory €T,
we could then compute

(8.3) QKr.v.a,8,T,u) := inf {R(Hy,0,8,T)lulln, 5, }

and since |e, - Vivly ; < R(Hy, 0,8, T)lully ,p, for all ¥ € T, Q(Kr . a,8,T,u) could
then be used to asses the quality of the indicator for this particular problem.
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In practice, we may know |lull,_,p, only approximately. If we denote Hull;" ,p, the
approximation of [{ufl,_,p, obtained by using the (a-posteriori) information that we have
about the solution. then we call

(8.4) Q*(Kry, a8, T,u) i= inf {R(7y,0,8,T)luls, 5, }

the quality index of the indicator for this particular problem.

9. Computation of robustness and quality indices. In this section we shall
address as an example the computation of the indices defined above for some weighted
Sobolev spaces modeling the space of solutions of elliptic PDEs in the neigbrrhood of
corners.

Let I be an interval and m > | > 0 be integers, then by H.’,""(f) we denote the
weighted Sobolev space that is the completion of the set of the infinitely differentiable
functions under the norm

=1 m 1/2
(m,D) | k 2 k-l _(k 2
T = [ 2O @Mor+ Dol v B @)l 7|
k=0 k=l
where E;;o is void and v(®) := %-‘;’-. Fork=+,...,m, let
(kD) k=1 (k
ol = a7+ o 0@l 7

Let us introduce first some auxiliary theoretical results.

LEMMA 9.1. FO <y <9 <1andm 21 >0, then the inclusion H.’,""'"'(f) —

H;',"l(f) is compact.
Proof. See [21] (page 287). O

THEOREM 9.1. Let (a,3) € R? and v € (0,1), then

(9.1) lew = Vivllo,s, < Cla. By v Tlivll yari) v, 5

i.e. (e}, = V,v) is a bounded linear operator of H-(,z'z)(fg)/'P, into L(I,).

Proof. Since the inclusion H"z(i) — H‘(f) is continuous, then (9.1) holds when on
the right hand side “v“H’-’(T.-) is used instead of II"”H’-’(T)/P,‘ Since ¢}, = Vv = 0 for
v € Py, (9.1) follows immediately.

So we have:
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COROLLAR! 9.1. The robustness index is defined for any (a,3) € R?, any mesh T
and H = Hs'z(I.'), with0 <y <1

ForO0 <y <1,let

(v, W):"f = ‘/‘: [zz‘H'zvm(z)wm(z) + 1271)"(1)10"(1)] dz
L

denote the scalar product in the Hilbert space Hg'z(f;)/'Pl and |- li": = [( “ ):fJi the
corresponding norm.
For any v € H3%(I;)/P,, there exists a unique z, € H},'z(fi)/'Pl such that

(9.2) (2o w)2? = /I.(eg ~Viv)(el - Viw)dz , vwe H3*T)/P; .

(this follows from Theorem 9.1). Hence, T(v) := z, defines an operator of H3?( I)/P
into itself and we have the following theorem.

THEOREM 9.2. T is a self-adjoint, positive definite, compact, linear operator of H3*(I,)/ P,
into itself.

Proof. It is a simple consequence of the definition and Lemma 9.1. ]

Thus we have:

COROLLARY 9.2. _
R(H3¥ (L), a,8,T) = A},

where ) is the maximal eigenvalue of the problem T(v) = Av.

Let us now consider the mesh 7 with nodes z, := (1—‘6)2, (I == (zy-1,2;)). In Table 9.1
we show R(Hf,"(f.-), a,B.T) for v = 0.0 and ¥ = 0.9 at each interior subinterval, for Z-Z
and B-M indicators and for the optimal indicator in the sense of minimising R. v = 0.0
corresponds to a space of smooth functions and 4 = 0.9 to a set of functions with a strong
singularity at the origin.

We observe that for very nonsmooth functions (4 = 0.9) the robustness index indicates
that the Z-Z indicator performs better than the B-M indicator on those intervals closest
to the singularity (i = 2,3,4). On the other hand, for smooth functions (y = 0.0) B-M
robustness indices are always better.

Now let Kr  be the one-parameter family of spaces Hff'z(fz). v € T:=(0,1), with
¥(v)=1,¥y €T, (I; =(0.01,0.04) and I; = (0.00,0.09)). In Table 9.2 we show the quality
indices Q(Kr,y,a,3,T,u) for problems which solutions are the functions u(z) = R(z?+?")
for various values of p and ¢ = 0.0 and ¢ = 0.5. We use the exact value of ”“”HE”(T,)/P‘ to
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compute Q. We also show in this table, the exact error |e, |, /., the estimated error [Viul, f,,

the effectivity index &2, the error in the estimate of e}, (i.e. err. est.:= |e] - Viulo,/,) and
le' —V.’nlo"

the percentage of this last error (i.e. %:= 100—",?:'::—1).

v=0.0 ¥y=09
Int. Z-Z B-M optimal Z-Z B-M optimal
2 | 0.451(-4) | 0.232(-4) | 0.103(-4) | 0.139(-1) | 0.645(-1) | 0.897(-2)
3 | 0.630(-4) | 0.363(-4) | 0.165(-4) | 0.542(-2) | 0.865(-2) | 0.254(-2)
4 | 0731(-4) | 0.440(-4) | 0.229(-4) | 0.227(-2) | 0.244(-2) | 0.983(-3)
5 | 0.786(-4) | 0.484(-4) | 0.274(-4) 0.110(-2) 0.978(-3) 0.481(-3)
6 | 0819(-4) | 0.509(-4) | 0.307(-4) | 0.595(-3) | 0.476(-3) | 0.269(-3)
7 | 0.839(-4) | 0525(-4) | 0.336(-4) | 0.348(-3) | 0.262(-3) | 0.160(-3)
8 | 0.852(-4) | 0.536(-4) | 0.363(-4) | 0.218(-3) | 0.157(-3) | 0.102(-3)
9 | 0.861(-4) | 0.543(-4) | 0.378(-4) | 0.143(-3) | 0.101(-3) | 0.685(-4)

Table 9.1. Robustness indices.

q= 0.0 Z2-7
P leclo,l, IV-"»‘|0'1, &2 err. est. % Q

055 | 0.94(-1) | 011(-0) | 1.14 | 0.52(-1) | 556 | 0.21(-0)
0.75 | 0.33(-1) | 029(-1) | 089 | 084(-2) | 258 | 0.40(-1)
095 | 0.38(-2) | 0.32(-2) | 084 [ 0.11(-2) | 286 | 0.42(-2)
115 | 0.64(-2) | 057(-2) | 089 | 0.28-2) | 43.1 | 0.66(-2)
135 | 0.82(-2) | 081(-2) | 099 | 0.48(-2) | 587 | 0.84(-2)
1.55 | 0.69(-2) | 0.78(-2) | 1.13 | 0.52(-2) 748 | 0.73(-2)
1.75 | 0.50(-2) { 0.65(-2) | 1.20 | 046(-2) | 918 | 0.56(-2)
1.95 | 0.33(-2) | 049(-2) | 1.48 | 037(-2) | 1105 | 0.42(-2)
215 | 0.21(-2) | o036(-2) [ 1.69 | 0.28-2) | 131.3 | 0.31(-2)
235 | 013(-2) | 025-2) | 1.93 | 0.20(-2) | 154.8 | 0.22(-2)

Table 9.2.a. Quality indices Q of Z-Z indicator for u(z) = R(z?*%), (¢ = 0.0).
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qg= 0.0 B-M
p levlo.r, Viul, 1, &2 err. est. % Q

0.55 | 094(-1) | 0.35-0) | 3.73 | 0.31(-0) | 326.9 | 0.50(-0)
0.75 | 0.33(-1) | o0.86(-1) | 263 | 0.70(-1) | 2159 | 0.95(-1)
095 | 0.38(-2) | 0.76(-2) | 2.00 | 057(-2) | 150.5 | 0.84(-2)
1.15 | 0.64(-2) | o010(-1) | 1.59 | o068(-2) | 1065 | 0.11(-1)
1.35 | 0.82(-2) | o0.11(-1) | 1.32 | 0.61(-2) 73.9 | 0.11(-1)
1.55 | 0.69(-2) | 0.79¢-2) | 114 | 033(-2) 47.8 | 0.79(-2)
1.75 | 0.50(-2) | 0.52(-2) | 1.04 | 0.13(-2) 254 | 0.50(-2)
1.95 | 0.33(-2) | 0.33(-2) | 1.00 | 0.17(-3) 49 | 0.32(-2)
2.15 | 0.21(-2) | 0.22(-2) | 1.02 | 0.31(-3) 14.7 | 0.22(-2)
2.35 | 013(-2) | 0.14(-2) | 1.09 | 0.45(-3) 344 | 0.16(-2)

Table 9.2.b. Quality indices Q of B-M indicator for u(z) = R(z?*?), (¢ = 0.0).

¢g=035 Z-7
p levlo, s, Viulg g, §2 err. est. % Q

0.55 | 0.88(-1) | 0.16(-0) | 1.80 | 0.13(-0) | 146.5 | 0.31(-0)
0.75 | 0.67(-1) | 0.59-1) | 0.88 | 0.32(-1) | 47.0 | 0.85(-1)
0.95 | 0.42(-1) [ 031(-1) | 074 | 0.15(-1) 359 | 0.43(-1)
1.15 | 0.23(-1) | 0.21(-1) | 090 | 0.14(-1) 58.7 | 0.24(-1)
1.35 | 0.13(-1) | 015(-1) | 117 | 0.11(1) 86.6 | 0.14(-1)
155 | 0.65(-2) | 098-2) | 1.51 | o0.78(-2) | 119.1 | 0.83(-2)
175 | 033(-2) | 064(-2) | 192 | 0.53(-2) | 1586 | 0.55(-2)
1.95 | 0.17(-2) | 041(-2) | 243 | 0.35-2) | 2075 | 6.38(-2)
2.15 | 0.83(-3) | 025(-2) | 3.05 | 0.22(-2) | 268.7 | 0.27(-2)
2.35 | 0.42(-3) | 0.16(-2) | 3.83 | 0.14(-2) | 345.2 | 0.20(-2)

Table 9.2.c. Quality indices Q of Z-Z indicator for u(z) = R(z?*?"), (¢ = 0.5).
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p lewlo.r, |Viuly 4, §2 err. est. % Q

0.55 | 0.88(-1) | 0.51(-0) | 574 | 0.47(-0) | 533.4 | 0.74(-0)
0.75 | 0.67(-1) | 0.19(-0) | 2.84 | 0.16(-0) | 242.0 | 0.20(-0)
095 | 0.42(-1) | 0.72(-1) | 1.72 | 0.53(-1) | 126.6 | 0.82(-1)
1.15 | 0.23(-1) | 027¢-1) | 1.15 | 0.15(-1) 62.2 | 0.35(-1)
1.35 | 0.13(-1) | o0.11(-1) | 0.88 | 0.27(-2) 21.2 | 0.17(-1)
1.55 | 065(-2) | 057(-2) | 087 | 0.18(-2) 97.3 | 0.84(-2)
1.75 | 0.33(-2) | 0350-2) | 1.04 | 0.20(-2) | 60.1 | 0.46(-2)
1.95 | 0.17¢-2) | 0.22(-2) | 1.3¢ | 0.16(-2) 96.8 | 0.28(-2)
215 | 083(-3) | 014(-2) | 1.73 | 0.12(-2) | 138.7 | 0.19(-2)
235 | 0.42(-3) | 092(-3) | 222 | 0.78(-3) | 188.4 | 0.14(-2)

Table 9.2.d. Quality indices Q of B-M indicator for u(z) = R(z?*?"), (¢ = 0.3).

Since, in practice, the exact norm of the solution is not known, we need to estimate it.
The second derivative can be recovered from the error estimate and the third one by using
differences of these estimates on neighboring elements. By this way we can compute the
quality indices Q°. In Table 9.3 we report the values of Q* corresponding to tables 9.2.

qg=20.0 g=0.35
? Z2-7 B-M Z-Z B-M

055 | 0.12(-0) | 0.19(-0) | 0.13(-0) | 0.25(-0)
0.75 | 0.38(-1) | 0.51(-1) | 0.76(-1) | 0.11(-0)
0.95 | 0.42(-2) | 0.49(-2) | 0.43(-1) | 0.47(-1)
1.15 | 0.68(-2) | 0.71(-2) | 0.23(-1) | 0.21(-1)
1.35 | 0.87(-2) | 0.81(-2) | 0.13(-1) | 0.99(-2)
1.55 | 0.75(-2) | 0.64(-2) | 0.76(-2) | 0.55(-2)
1.75 | 0.58(-2) | 0.45(-2) | 0.51(-2) | 0.37(-2)
1.95 | 043(-2) | 0.32(-2) | 0.41(-2) | 0.28{-2)
2.15 | 0.31(-2) | 0.22(-2) | 0.37(-2) | 0.27(-2)
235 | 0.23(-2) | 0.17(-2) | 0.36(-2) | 0.26(-2)

Table 9.3. Quality indices Q°.

From tables 9.2 and 9.3 we observe the following features.

1) Sometimes, although Vu does not approximate the error e, well, [[Viu|ly ; can be
a close approximation of [le,|l, ;..

2) Z-Z indicator performs better than B-M when the solution is nonsmooth (provid-
ed that the mesh is properly graded) and B-M performs better if the solution is
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(1]
(2

(3)

(4]

5]
(6l

smooth.

3) The quality indices correctly indicate that Z-Z indicator is preferable for nonsmooth
solutions while B-M is preferable for smooth ones. In principle, a criterion for
selecting Z-Z, B-M or any other indicator could be based on comparing their quality
indices.

10. Conclusions. In the one-dimensional setting we have shown:

a) From an asymptotic point of view, an optimal indicator can be derived for any
adaptively constructed mesh. The Z-Z indicator is optimal when the adaptive
procedure equilibrates the elemental error ¢/, in the L!'-norm and is not optimal if
the energy norm (i.e. L*-norm of ¢ ) is equilibrated.

b) Z-Z indicator is not asymptotically exact for a general mesh while B-M is.

¢) In a nonasymptotic sense, when the solution is nonsmooth and the mesh is reason-
ably graded, Z-Z indicator gives better results than B-M. Otherwise B-M does.

d) The quality and robustness indices can be used to select an indicator.

In the two- dimensional setting we have shown:

a) For general meshes, an asymptotically exact estimator can not be achieved by a
simaple L2-projection technique.

b) For translation invariant meshes, asymptotically exact estimators can be defined
by utilizing superconvergence techniques based on differences.

c) For more general meshes, the way to define a reasonable estimator is very likely to
assume that the mesh is locally translation invariant (although it is not).

d) The major nrinciples analyzed in the one-dimensional setting could be utilized in
two dimensions, although further research work is needed in this direction.
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